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PLASTIC BENDING OF A STRIP FOR A YIELD CRITERION

DEPENDING ON THE MEAN STRESS

UDC 539.374E. A. Lyamina

The plane-strain plastic bending of a wide strip is considered under the assumption that the material
of the strip obeys the Coulomb–Mohr yield criterion and the two types of kinematic relations proposed
by Spencer and Hill.
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The bending of a strip under large plane-strain conditions is considered in [1–6] using several models of
a rigid-plastic body. In all these cases, the plastic flow is assumed to be independent of the mean stress. This
assumption is justified for most metallic materials. However, models for materials with a yield criterion dependent
on the mean stress have been developed for granular materials and soils, for which bending is not a typical mode
of deformation. These models are reviewed in [7]. Nevertheless, the yield criteria for modern metallic materials,
such as some aluminum alloys and steels, exhibit a dependence on the mean stress provided the incompressibility
condition holds [8–11]. For these materials, the models of [7] are applicable and bending is an important mode
of deformation, for example, during plastic metal working. In the present paper, a solution is constructed for the
in-plane bending of a strip using the models proposed by Hill [1] and Spencer [12]. It is shown that these solutions
coincide for this type of deformation. The solution extends the solution obtained in [1] to the model of an ideal
rigid-plastic material. However, the new solution is based on the principally different approach considered in [13].

In the polar coordinates r and θ used below, the model proposed in [12] for a material under plain strain is
defined by the equations
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Here (1) are the equilibrium equations, (2) is the Coulomb–Mohr yield criterion, (3) is the incompressibility equation,
and (4) is the stress–strain relation; σrr, σθθ, and σrθ are the stress-tensor components, u and v are the projections
of the velocity vector onto the r and θ directions, respectively, ψ is the angle between the maximum principal stress
and the r axis, which is reckoned counterclockwise from the axis, ϕ is the internal-friction angle, k is the adhesion
coefficient, and d/dt denotes the total derivative with respect to time. In the model proposed in [1], Eq. (4) is
replaced by the equation
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The equations of classical plasticity are obtained for ϕ = 0. Here k is the shear yield point.

Institute of Problems of Mechanics, Russian Academy of Science, Moscow 119526; lyamina@ipmnet.ru. Trans-
lated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 2, pp. 120–125, March–April, 2006. Original
article submitted July 26, 2004; revision submitted July 1, 2005.

0021-8944/06/4702-0249 c© 2006 Springer Science +Business Media, Inc. 249



x

y

D

O

C

A

B

o0

r
AB

p
s/a

Fig. 1. Geometry of the process.

We denote the initial thickness and length of the strip by H0 and 2L0, respectively. For pure bending, the
final and all intermediate shapes of the region being deformed are determined by two circular arcs AB and CD and
two straight lines AD and CB (Fig. 1). The process is symmetric about the x axis, and the y axis is tangent to the
arc AB at each instant of time. Below, we confine our attention to the region y � 0. We denote the angle between
the straight line CB and the x axis by θ0 and the radii of the arcs AB and CD by rAB and rCD, respectively. At the
initial time (θ0 = 0), rAB → ∞ and rCD → ∞, the lengths of the arcs AB and CD are equal to 2L0, and the lengths
of the straight lines CB and AD are equal to H0. Aleksandrov and Dixon [13], introduced Lagrangian coordinates ζ
and η that presumably coincide with the principal stress trajectories:
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Here a is an arbitrary monotonically increasing function of time and s is an arbitrary function of a. Moreover, a = 0
for t = 0. It is shown in [13] that transformation (6) satisfies the incompressibility equation (3) for any function s(a)
and that at the initial moment, x = ζH0 and y = ηH0 if

s = 1/4 (7)

for a = 0. Thus, if relation (7) is satisfied, in the chosen coordinate system (x, y) (see Fig. 1) we have ζ = 0
on AB, ζ = −1 on CD, η = 0 on the symmetry axis, and η = L0/H0 on BC. For convenience, we introduce a polar
coordinate system with origin at x = −√

s/a, y = 0 that moves along the x axis (Fig. 1). Using (6), we obtain
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From this, rAB, rCD, θ0, and the current thickness h are expressed as
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Thus, the function s(a) completely defines the geometry of the deformed region. For the pure bending of a strip
from rigid-plastic materials, a neutral line exists on which the stresses are discontinuous and the strain rates vanish.
The strain rates can be determined from (6) by direct differentiation. In particular, the equivalent strain rate (the
second invariant of the strain rate tensor) is given by
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dt
. (10)
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Equation (10) defines the neutral line in Lagrangian coordinates

ζ = ζn = −ds
da
. (11)

From (8) it follows that at each time, the coordinate lines of the Lagrangian system (ζ, η) coincide with the
coordinate lines of the system (r, θ). Thus, σrθ = 0 at each point of the deformed region and, in particular, on its
boundary, which is one of the boundary condition for pure bending of a strip. Moreover, the stresses σrr and σθθ

are principal stresses such that σrr < σθθ (and ψ = π/2) in the range ζn < ζ � 0 and σrr > σθθ (and ψ = 0) in the
range −1 � ζ < ζn. In this case, the yield criterion (2) becomes

(σrr + σθθ) sinϕ∓ (σrr − σθθ) = 2k cosϕ, (12)

where the upper sign refers to the region ζn < ζ � 0 and the lower sign to the region −1 � ζ < ζn. The second
equilibrium equation (1) and condition (12) show that the stresses are independent of θ. Using (8), we obtain
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From the first equilibrium equation (1), differentiating with respect to ζ using (13), eliminating r by means of (8),
and taking into account that σrθ = 0, we obtain

2(ζa+ s)
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Eliminating σθθ from this equation by means of (12) and integrating over the regions ζn < ζ � 0 and −1 � ζ < ζn
for the boundary conditions σrr = 0 for ζ = 0 and ζ = −1, we obtain

σrr = k cot ϕ[1 − sn1(ζa+ s)−n1 ], n1 = sinϕ/(1 + sinϕ) (15)

in the region ζn < ζ � 0 and
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in the region −1 � ζ < ζn. Since the stress σrr should be continuous for ζ = ζn [ζn is determined by Eq. (11)],
relations (15) and (16) imply the equation for s:
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Equation (17) should be solved numerically using condition (7). After that, all geometrical parameters of the
process can be determined from (9). It is clear that Eq. (17) has a solution for s � a. The physical meaning of this
inequality is that rCD = 0 for s = a, as follows from (9). We also note that the right and left sides of Eq. (17) vanish
at the initial time. We determine the derivative ds/da for a = 0 using the condition that the principal vector of the
external forces applied to the boundary segment CB (Fig. 1) vanishes. In the Cartesian coordinate system shown
in Fig. 1, the stress σxx vanishes at each point at the initial time. Thus, from the yield criterion (12), in which σrr

should be replaced by σxx and σθθ by σyy, we have
σyy = 2k cosϕ/(1 + sinϕ) (18)

for ζn < ζ � 0 and
σyy = −2k cosϕ/(1 − sinϕ) (19)

for −1 � ζ < ζn. Setting the principal vector of the external forces to zero, from Eqs. (18) and (19) we obtain
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for a = 0. Condition (20) is used for numerical solution of Eq. (17).
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Fig. 2. Effect of the angle ϕ on the position of the neutral axis
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Fig. 3. Effect of the angle ϕ on the current thickness of the strip

Fig. 4. Effect of the angle ϕ on the dimensionless bending moment

The bending moment is given by

M =

rAB∫

rCD

σθθr dr. (21)

Transforming (21) to the Lagrangian variable by means of (8), writing σθθ as a function of a and ζ with the help
of (12), (15), and (16), and integrating, we obtain
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Here s and ζn are known functions of a due to the numerical solution of Eq. (17) and relation (11). For a = 0, the
bending moment is defined by means of (18) and (19) as
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. (23)
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It remains to show that Eqs. (4) and (5) are satisfied. Since the stresses and strain rates do not depend on θ,
it suffices to examine the solution on the line θ = 0. Due to of symmetry on this line, we have v = 0 and ∂u/∂θ = 0.
Consequently, ∂v/∂r = 0. In addition, ψ = 0 or ψ = π/2. Substitution of these relations into (4) and (5) shows
that the equations are satisfied. Thus, in the case considered, the solutions for the two models coincide.

In [9], the quantity ϕ was determined experimentally for several steel grades. In the notation of the present
paper, the interval of ϕ can be written as 0.014 < ϕ < 0.064. For these materials, Fig. 2 shows the position of
the neutral line versus the parameter a for two values of the angle ϕ (the solid curve refers to ϕ = 0 and the
dashed curve to ϕ = 0.064). These curves were determined by solving Eq. (17) with the use of relation (11). It is
interesting to note that in the initial stage of the process, the neutral line in materials whose yield criterion depends
on the mean stress is closer to the concave surface CD (Fig. 1) than that in materials that obey the von Mises
yield criterion and, after a certain level of strain, it is closer to the convex surface AB. The thickness of the strip
determined from (9) and the dimensionless bending moment calculated from (22) and (23) are shown in Figs. 3
and 4, respectively, for various values of ϕ. For ϕ = 0, the curves in both figures correspond to the solution obtained
by the classical theory of plasticity in [1]. We note that in accordance with (9), the quantity a, which is used in
the figures as an independent variable, is proportional to the angle θ0, which has a clear physical meaning. One
can see from Fig. 4 that the bending moment decreases during the deformation of the strip (except for the solution
obtained by the classical theory of plasticity).

This work was supported by the Foundation for assistance to domestic science and the Foundation “Leading
Scientific Schools of Russia” (Grant No. NSh-1849.2003.1).
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